
Take-off / Landing Performance

- 1. Record actual conditions
- 2. Interpolate ground roll, and distance to clear 50' obstacle (if required) This step may need to be performed up to 3 times:
 - i. Interpolate ground roll at first charted pressure altitude (between temperature)
 - ii. Interpolate ground roll at second charted pressure altitude (between temperature)
 - iii. Interpolate ground roll from (i) and (ii) between charted pressure altitudes
- 3. Apply headwind correction
- 4. Apply turf runway correction (if required)

Actual Conditions (1)

P.Alt.	Temperature	Wind Direction	Wind Speed	Crosswind	Headwind

POH Conditions

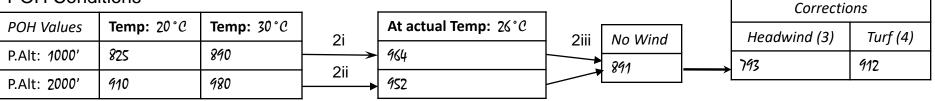
Interpolating Distances

To interpolate a distance between 2 temperature values, think of the actual temperature as a fraction of the range (between the charted temperatures). 33° C is 0.30 of the range of 30° C to 40° C, therefore the distance will be 0.30 of the distance listed at 30° C and 40° C. Assuming a pAlt of 1000'. 0.30 of the range from 890' to 960' is 21' (960 - 890 = 70 × 0.30 = 21). Therefore, at 1000'pAlt, and a temperature of 33° C, the takeoff distance is 911'. Using the same process, the takeoff distance at 2000'pAlt, and a temperature of 33° C, the distance is: 1002.5' (1055 - 980 = $75 \times 0.30 = 22.5 + 980 = 1002.5$)

Use the same technique to interpolate between pressure altitudes. For example a pAlt of 1275' is 0.275 of the range of 1000' and 2000'. At 33°C, and a pAlt of 1275, the takeoff distance is 936.2'

 $(1002.5 - 911 = 91.5 \times 0.275 = 25.2' + 911 = 936.2')$

TAKEOFF DISTANCE


PRESS		30 ⁰ C	40 ⁰ C		
ALT FT	GRND	TOTAL TO CLEAR 50 FT OBS	GRND ROLL	TOTAL TO CLEAR 50 FT OBS	
S.L.^ 1000 2000	810 890 980	1495 1645 1820	875 960 1055	1605 1770 1960	

Example – Take-off

Actual Conditions ** Assuming Runway 22, Turf, no obstacle

P.Alt.	Temperature	Wind Direction	Wind Speed	Crosswind	Headwind
1300'	26 <i>°C</i>	180°M	13KTS	8 KTS	10 KTS

POH Conditions

Temperature of 26°C is 0.60 of the range of 20°C and 30°C Pressure altitude of 1300' is 0.300 of the range of 1000' and 2000'

1) At 1000' P.Alt – Interpolate ground roll at 26°C:

890 - 825 = 65 × 0.60 = 39 + 825 = **864**'

2) At 2000' P.Alt – Interpolate ground roll at 26°C:

980 - 910 = 70 × 0.60 = 42 + 910 = **952**'

3) At 26°C – Interpolate ground roll at 1300'P.Alt:

952 - 864 = 88 × 0.300 = 26.4 + 864 = <u>890.4' → 891</u> (Ground Roll) Headwind Correction: Percent Reduction: (**10KTS** ÷ 9KTS) × 10% = 11.1%

Ground Roll - Headwind Correction: 891' –11.1% = <u>792.1' → 793</u>

Ground Roll - Turf Correction: 793' + 15% = **911.95' → 912**